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LElTER TO THE EDITOR 

Exact solution of an N-sublattice vertex model 
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Abstract. The exact diagonalization of the diagonal-to-diagonal transfer matrix of an 
. N-~uhlntfice ~ ue*ex .~~~~~ model with .... inter.CtiOnS ~~~~~~.~ of the Y C R ~ X - ~ T T O W  type hetween sublattices 
is camed out using the generalized nested Bethe-ansau method. An exact expression for 
the free energy is obtained involving the solution of an integral equation which is studied 
numerically. 

Considerable progress in the construction and investigation of new exactly solvable 
models in two-dimensional statistical mechanics [ 1-41 has been achieved since the 
famous Baxter solution [5] of the eight-vertex model. In particular new lattice models 
in which the links may be in q different states (with q > 2) were solved using the nested 
Bethe-ansatz method [4,6,7]. A few two-sublattice models with interactions of the 
arrow-arrow type between sublattices were also solved using this method [&lo]. 
However, up to now, generalizations of these models for the case of an arbitrary 
number of interacting sublattices have not yet been constructed. Therefore the consider- 
ation of multi-sublattice models with another type of interaction between subiattices 
may be of interest. 

In this letter we consider a vertex model of such a kind with N sublattices and 
with a new type of interaction between sublattices, namely vertex-arrow interactions. 
This model is a generalization of the two-sublattice vertex model studied in [ l l ]  and 
may be considered as the classical counterpart of a quantum model solved in 1121. 

six-vertex models as shown on figure 1 in the case N = 3. With each edge of the different 

- ,"e model may ;e furriiuiair; as fui:uws. -?<e eoiiji:ei 2 yyj;em of p: ziio-fie:d 

Figure 1. Geometry used to write the diagonal-to-diagonal transfer matrix of the N. 
sublattice model (with N =3). 
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sublattices is associated an arrow that points towards one of the two neighbouring 
vertices. At each vertex, we allow for the six standard arrow configurations obeying 
the ice rule (figure 2) with Boltzmann weights 

0 ,  = o2 = a o , = w 4 = b  o5 = lo6 = c. (1) 
The interactions between sublattices are defined in the following way. From figure 1, 
it is clear that near each vertex of one sublattice one finds N - 1  vertical arrows 
pertaining to the remaining sublattices. We suppose that the corresponding vertex 
weight depends on the direction of these arrows through 

where s is the number of nearest vertical arrows pointing down on other sublattices 
for the considered vertex (s = 0, 1,2,. . . , N- 1). So we have a system of interacting 
six-vertex models under the additional free-fermion condition a’+ b2-  c2 = 0 within 
each sublattice. This is the price to pay for the introduction of interactions between 
sublattices while keeping an integrable model. These interactions between sublattices 
are infinite-ranged and their strength is parametrized by 7 (7 > 0). 

( a , b , ~ ) = { l , b e - ~ ~ , ~ )  (2) 

a (L b 6 c c 

Figure 2. The six arrow configurations allowed at a vertex. 

To calculate the partition function of the system, we use the diagonal-to-diagonal 
transfer matrix [8,13]. In the thermodynamic limit, the free energy may be expressed 
in terms of the maximal eigenvalue of this matrix as 

1 
-pj%= lim -In A,,, 

L-m L 

where L is the number of vertices on a row in each sublattice and p is the inverse 
temperature. The transfer matrix T relates the states of two successive rows of arrows 
on the lattice and the eigenvalue equation has the following form 

TY = AY. (4) 

Since on the transition from one row to the next, the number of down-poiniing arrows 
in each sublattice is conserved, an obvious way to describe the state of a row is to 
specify the positions of the arrows directed downwards. Each cell of the system with 
coordinate x consists of N pairs of edges (x, T )  belonging to the different sublattices, 
where T = 1 and 2 for inclined and vertical edges, respectively. Let 

( 5 )  
be the amplitude corresponding to the state of a row with down-pointing arrows 
on the edges ( x ] . T , ) .  ..., ( X , ~ , T , , , , )  of the first sublattice, on the edges 
(x,,,,+~, T,,,,+~), . . . , (x,,+,,, T,,,,+,,) of the second sublattice and so on. The total 
number of arrows directed downwards is then given by n = Z z 1  m,. 

Y T L  ..., “(XI , .  . . , Xt”,lX*,+,, , . . , x,,+,,I . . . Ixn--”+I,. . . I X“) 
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In order to write down the generalized Bethe ansatz [4,6], we divide the domain 
of definition of * in equation ( 5 )  into subdomains by means of the relation 

( l ,  l ) = ( X Q s ,  TO, )<  ( X Q , ,  T Q 2 )  s.. .s(xQn, 7 0 " ) s  (L,  2) (6) 

where [ Q , ,  . . . , Q.] is a permutation over the numbers 1,2,. . . , n. The inequality 
( x j ,  7,) < ( x j ,  q) means that either xi < xj or xi = xj,  T~ = 1, 7j = 2 or x, = xj, T~ = 7j = 1 
( i  < j). In the last case the arrows directed downwards are located on different sublat- 

vertical arrows belonging to different suhlattices. On figure 1 this means that (xi, 7,) 
is located on the left of ( x j ,  q). Within each of these subdomains, we write the amplitude 
in equation ( 5 )  in the form of the generalized Bethe ansatz [4,6] 

tirn. Thn nnt1n1;t.r (.. \--Ix, - 1 ..a-I;.,mA --I., ... hnr - ~ - - - - 9  : P &th 
LL.,*I. 1s.- W.j..Y.'L, (Ai, ,<,-\ ,, ' j ,  a* L*'. .LII" " L U J  W..C1. * j - * j ,  ,{ - ' j  - L ,  1.1. 1 ..I... 

* r , , . . 7 m ( ~ l , .  .. ,x . )=n W ~ x ( - l ) p ( - l ) Q A ~ ! ; ~ ~ ~ "  Il + \ ~ ) ( x Q , )  ( 7 a )  
I P j=z 

W,=s [ (1+b2e-2 in ) / ( l+b2) ]1 '2 .  
j - 1  

The sum in (7a )  is over all the permutations P = [PI,. . . , P.] on 1,2,. . . , n. n; is the 
number of groups consisting of I vertical arrows directed downwards with the same 
coordinates. The $,!"(x)k are the amplitudes of one-particle states. Their explicit form 
is obtained by considering the case n = 1 

+y)(x) = c?(A - b) exp(ikx) $ ik ) (x )  = exp(ikx) ( s a )  

A=A(p)=e-jP[b cosp*Jl+b'cos'p] p = k / 2  (8b)  

where A is the eigenvalue of the one-particle problem. The eigenvalue corresponding 
!e the 2mp!itnde (70) is the!? 

The amplitude (7a) will satisfy the eigenvalue equation (4) by construction in the case 
where down-pointing arrows are situated at different lattice sites, i.e. within the 

provided the coefficients A;Q satisfy the following equations 
schdnmains (6) .  Eq..ntin!! (4) is a!sa sztisfed nn the bnnndq OF e x ! !  snbdom2in 

SB." ['(M - M )]A"B ... A:::"p:::: = m,m2 2 P, P, ... P2PI 

A"'"'"' -A"'."""' (10) 
P* ... P"P, exp(ikp,L) 

N 

* .@=I  

PV.P" - 
where the non-vanishing elements of the S-matrix are 

s::( M )  = 1 S::(M) =sin M/sin(M+iq)  

S $ ( M )  = i  sinh 7 exp[i sgn(p - a)M]/sin(M +iq) (11) 

Mi = W P j )  M ( p )  = i In h ( p ) .  

A necessary and sufficient condition for the compatibility of equation (10) is the 
fulfilment of the Yang-Baxter equations [I-4.63. In our case, the S-matrix which has 
a well known form [7,14] satisfies these equations and we may use the quantum inverse 
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scattering method [2 ,3 ,15 ,16 ]  to solve (10). As a result, we obtain a system of 
transcendental equations for the p,  and additional unknown quantities A:,' 

"-1 

2Lpj+ 1 O(M,-A;'; q' )=2w4 (j= 1,2,. . . , n )  
Y = l  

1 s  7 s  "-* 1 C k C N - 1  (AY1- M,) 

where 

@ ( M ;  q )  = 2  tan-'(coth q tan4M) -TI C O ( M ;  q )  < n 

and 4 and J y '  are integer (half-integer) numbers for odd (even) mN-, + 1 and mk-, + 
m,,, respectively, 

k 

j = 1  
61, = 1 m, (13)  

is the total number of arrows directed downwards on the first, second,. . .and kth 
sublattices. 

The largest eigenvalue of the transfer matrix corresponds to the following values 
of 4 and JF' 

(14) 
therefore in the thermodynamic limit (L+ CO), for fixed ratios n l  L and mk f L, we may 
assume that the values ofp, and A y )  fill the intervals [-Q, 91 and [-Bk, Bk] uniformly 
with the densities p ( p )  and dk'(A) ,  respectively. Then, instead of (12), we obtain the 
following system of integral equations 

Z ? r p ( p ) = I + M ' ( p )  O'(M(p)-A; ~ ' ) u ( ~ ' ( A ) d i l  

I .  J + 1  - I .  J = 1 J F J ,  - J F ' =  1 

6, 

1 S k S N - 1  Bo=Q B N = O  

From the symmetry of the system, it is clear that Amax corresponds to symmetrical 
configurations with the same number of arrows directed downwards on all sublattices. 
Then all Bk = ?r and the Fourier transformation may be used to reduce the system of 
equations (15) to a single integral equation for the unknown function p ( p )  

Q 

2707(p)-M'(p) I-, P [ M ( P ) - M ( P ' ) I P ( P ' )  dp'= 1 (16)  

where 

(17) 
sinh[nq(N-l)]  

cos( nM). 1 "  
p ( M ) = 1 - - + 2  C exp(-nq) N n = i  sinh( nqN) 
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The free energy given by equation (3) then takes the following form 

f = - 2 p  I n [ b c o s p + J 1 + b 2 c o s 2 p ] p ( p )  dp. 

The parameter Q in equations (16)-(18) must be chosen to minimize the right-hand 
side of equation (18). 

Once Q has been determined, we may calculate the density of arrows pointing down 

from which the magnetization y = 1 -2p follows. We have carried out this program 
numerically in the quantum limit ( b  -to). The first term in the expansion of (18) then 
corresponds to the ground-state energy of the quantum model considered in [12]. The 
results of these calculations illustrate the dependence of the density p on the interaction 
parameter 7 (figure 3) and the number of sublattices N (figure 4) for arbitrary small 
values of b. From these figures it is clear that the model under consideration has a 

1 

0.3 
0 1 2 3 4 5 

11 

Figun 3. Density of arrows directed downwards as a function of  the interaction 
parameter 7. 

0.5 ~1 

0.25 ' I 
2 2.5 3 3.5 4 4.5 5 

N 

Figure 4. Density of arrows directed downwards as a function of the number of 
sublattices N. 
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finite zero-field magnetization. The reason for it is the asymmetry of the model under 
arrow reversal. 

Thus we have obtained an exact expression for the free energy of the N-sublattice 
vertex model with interactions between sublattices of the vertex-arrow type. This 
solution is analytic with respect to b and q in the entire range of variation of the 
parameters except for the point q =O. This is due to the fact that this solution 
corresponds to the critical point of a more general model. The study of the critical 
behaviour of the model considered and its connections with other integrable systems 
will be the subject of a following investigation. 

RZB thanks the Laboratoire de Physique du Solide for the hospitality extended to him 
in Nancy and the Scientific Council on High Temperature Superconductivity (Russia) 
for financial support under grant no 91-151. 
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